
CS106B
Spring 2013

Handout #15
May 3, 2013

Assignment 5: Boggle!

This assignment, which was originally developed by Todd Feldman and then enhanced by Julie
Zelenski, has become a classic in CS106B. Your mission is to write a program to play the game of
Boggle™, which should help you get over any lingering doubts about the power of recursive
techniques.

Due: Monday, May 13th at 2:15PM

The game of Boggle

It’s time for a CS106 classic, the venerable word game Boggle! The Boggle game board is a square
grid onto which you randomly distribute a set of letter cubes. The goal is to find words on the board by
tracing a path through adjoining letters. Two letters adjoin if they are next to each other horizontally,
vertically, or diagonally. There are up to eight letters adjoining a cube. Each cube can be used at most
once in a word. In the original version, all players work concurrently listing the words they find.
When time is called, duplicates are removed from the lists and the players receive points for their
remaining words.

Your assignment is to write a program that plays a fun, graphical rendition of this little charmer,
adapted for the human and computer to play pitted against one another. You’ll quickly learn you have
little hope of defeating the computer, but it’s awesome to realize you wrote this program that can so
soundly thrash you again and again!

This assignment will give you a little more practice as a class client, but the main focus is on designing
and implementing recursive algorithms. At the heart of the program are two recursive functions that
find words on the board, one for the human player and another for the computer. Although each
function is only a dozen lines of code, recursive algorithms can be dense and tricky and will require
your best recursion mojo to conquer. When you are done, you will have earned the right to call
yourself a journeyman in the way of recursion.

- 1 -

How’s this going to work?

You set up the letter cubes, shake them up, and lay them out on the board. The human player gets to go
first (nothing like trying to give yourself the advantage). The player enters words one by one. After
verifying that a word is legitimate, you highlight its letters on the board, add it to the player’s word list,
and award the player points according to the word’s length.

Once the player has found as many words as he or she can, the computer takes a turn. The computer
searches through the board to find all the remaining words and awards itself points for those words.
The computer typically beats the player mercilessly, but the player is free to try again and again, until
finally ready to acknowledge the superiority of silicon.

The letter cubes

The letters in Boggle are not simply chosen at random. Instead, the letter cubes are designed in such a
way that common letters come up more often and it is easier to get a good mix of vowels and
consonants. To recreate this, our starter code declares an array of the cubes from the original Boggle.
Each cube is described using a string of 6 letters, as shown below:

const string STANDARD_CUBES[16] = {
 "AAEEGN", "ABBJOO", "ACHOPS", "AFFKPS",
 "AOOTTW", "CIMOTU", "DEILRX", "DELRVY",
 "DISTTY", "EEGHNW", "EEINSU", "EHRTVW",
 "EIOSST", "ELRTTY", "HIMNQU", "HLNNRZ"
};

These strings are used to initialize the cubes on the board. At the beginning of each game, “shake” the
board cubes. There are two different random aspects to consider. First, the cubes themselves need to
be shuffled so that the same cube is not always in the same location on the board. Second, a random
side from each cube needs to be chosen to be the face-up letter.

To rearrange the cubes on the board, you should use the following shuffling algorithm, * presented here
in pseudocode form:

Copy the constant array into a vector vec so you can modify it.
Shuffle vec using the following approach:
 for (int i = 0; i < vec.size(); i++) {
 Choose a random index r between i and the last element position, inclusive.
 Swap the element at positions i and r.
 }
Fill the Boggle grid by choosing the elements of vec in order.

This code makes sure that the cubes are arranged randomly in the grid. Choosing a random side to put
face-up is straightforward. Put these two together and you can shake the cubes into many different
board combinations.

Alternatively, the user can choose to enter a custom board configuration. In this case, you still use your
same board data structure. The only difference is where the letters come from. The user enters a string
of characters, representing the cubes from left to right, top to bottom. Verify that this string is long
enough to fill the board and re-prompt if it is too short. If it’s too long, just ignore the ones you don’t
need. You do not need to verify that the entered characters are legal letters.

* This algorithm is, essentially, an iterative version of the recursive algorithm from the first section handout.

- 2 -

The human player’s turn

The human player enters each word she finds on the board. For each word, check that:

• It is at least four letters long.

• It is contained in the English lexicon.

• It has not already been included in the player’s word list (even if there is an alternate path on the
board to form the same word, the word is counted at most once).

• It can be formed on the board (i.e., it is composed of adjoining letters and each cube is used at most
once).

If any of these conditions fail, the word is rejected. If all is good, you add the word to the player’s
word list and score. In addition, you graphically show the word’s path by temporarily highlighting its
cubes on the board. You can use the graphics function pause to implement the delay. The length of
the word determines the score: one point for a 4-letter word, two points for 5-letters, and so on. The
functions from the gboggle.h interface provide helpful routines for highlighting cubes, displaying
word lists, and handling scores.

The player enters a blank line when done finding words, which signals the end of the human’s turn.

The computer’s turn

The computer then searches the entire board to find the remaining words missed by the human player.
The computer earns points for each word found that meets the requirements (minimum length,
contained in English lexicon, not already found, and can be formed on board).

As with any exponential search algorithm, it is important to look for ways to limit the search to ensure
that the process can be completed in a reasonable time. One of the most important Boggle strategies is
to prune dead end searches. For example, if you have a path starting zx, the lexicon’s containsPrefix
member function will inform you that there are no English words down that path. Thus, you should
stop right here and move on to more promising combinations. If you miss this optimization, you’ll find
yourself taking long coffee breaks while the computer is futilely looking for words like zxgub, zxaep, etc.
Even though you may love coffee, this is obviously not the best idea.

Our provided code

We have written all the fancy graphics functions for you. The functions exported by the gboggle.h
interface are used to manage the appearance of the game window. It includes functions for initializing
the display, labeling the cubes with letters, highlighting cubes, and displaying the word lists. Read the
interface file for more details. The implementation is provided to you in source form so you can extend
this code in your own novel ways if you are so inclined.

The Grid and Lexicon classes you’ve already seen will come in handy again. Our English
EnglishWords.dat file contains over 125,000 words, which is about four times as large as the average
person’s vocabulary, so it’s no wonder that the computer player is so hard to beat!

Solution strategies

In a project of this complexity, it is important that you get an early start and work consistently toward
your goal. To be sure that you’re making progress, it also helps to divide up the work into manageable
pieces, each of which has identifiable milestones. Here’s a suggested plan of attack that breaks the
problem down into the following five phases:

- 3 -

• Task 1—Cube setup, board drawing, cube shaking. Design your data structure for the cubes and
board. It will help to group related data into sensible structures rather than pass a dozen parameters
around. As usual, no global variables. Set up and shuffle the cubes. Use the gboggle routines to
draw the board. Add an option for the user to force the board configuration, as illustrated by the
sample application.

• Task 2—Human’s turn (except for finding words on the board). Write the loop that allows the user
to enter words. Reject words that have already been entered or that don’t meet the minimum word
length or that aren’t in the lexicon. Use the gboggle functions to add words to the graphical display
and keep score.

• Task 3—Find a given word on the board. Now put your recursive talents to work in verifying that a
word can be formed on the board, subject to the adjacency and nonduplication rules. You will
employ recursive backtracking that “fails fast”: as soon as you realize you can’t form the word
starting at a position, you move on to the next position. If a path is found, use the highlighting
function from gboggle to temporarily draw attention to the cubes that form the word.

• Task 4—Find all the words on the board (computer’s turn). Now it’s time to implement the killer
computer player. Employing the power of recursion, your computer player traverses the board using
an exhaustive search to find all remaining words. Be sure to use the lexicon prefix search to
abandon searches down dead-end paths.

• Task 5—Loop to play many games, add polish. Once you can successfully play one game, it’s a
snap to play many. With everything now working, it’s time to finish off the details. Be sure to
gracefully handle all user input. Make sure your comments are thoughtful and complete. Pat
yourself on the back and go eat some ice cream!

Requirements and suggestions

Here are a few details about our expectations for your solutions:

• Words should be considered case-insensitively: PEACE is the same as peace.

• The program contains two recursive searches: one to find a specific word entered by the human
player and another to search the board exhaustively for the computer’s turn. They are somewhat
similar, and you may be tempted to try to integrate the two into one combined function. In general,
we applaud this instinct to unify similar code. However, we need to tell you that it doesn’t play out
well in this case. There are enough differences between the two that they don’t combine cleanly and
the unified code is actually made worse, not better, as a result. Given the tricky nature of recursion,
you should focus on writing exceptionally clean code that clearly communicates its algorithm and
thus can be easily maintained and debugged. An important goal for this assignment is that you to
learn how to employ these two different varieties of recursion into the context of a larger program,
and we expect you to do so by writing two separate recursive searches.

• Our solution is about 250 lines of code (not counting comments) and is decomposed into about 30
functions.

• This is the first large, complete program you will write for CS106B and it will draw upon all of the
things you have learned so far. Getting to a working solution is an excellent indication that you’re
on top of the technical challenges. This program is also an opportunity to demonstrate your
commitment to good style. Your program should show thoughtful choices, be cleanly decomposed,
be easily readable, and contain appropriate comments. If you view style only as an afterthought—a
rearrangement after the fact to clean things up—you’ll have missed a huge part of the benefit, which
is that paying careful attention to design from the beginning results in code that is faster to write, is
more likely be functionally correct, is easier to debug and modify, and requires fewer comments.

- 4 -

A little more challenge: fun extras and extension ideas

As with most assignments, Boggle has many opportunities for extension. The following list may give
you some ideas but is in no sense definitive. Use your imagination!

• Make the Q a useful letter. Because the Q is largely useless unless it is adjacent to a U, the
commercial version of Boggle prints Qu together on a single face of the cube. You use both letters
together—a strategy that not only makes the Q more playable but also allows you to increase your
score because the combination counts as two letters.

• Add “Big Boggle.” Once you have a working program, it should require only a few trivial changes
to support the Big Boggle variant which uses a 5 × 5 board. Word game aficionados generally agree
that the original size was just a bit too small and scaling it up adds to the fun and challenge. This is
a great exercise in verifying that your design is sufficiently organized and flexible to permit this
adaptation. Our starting code declares two different cube arrays, one with the 16 cubes for the
standard game and another with the 25 cubes for the bigger version.

• Embellish the interface. Our gboggle module is supplied in source form so you can adapt into a
snazzier interface. For example, the current game merely highlights the word; it might be nice if it
also drew lines or arrows marking the connections. Or you could use the gevent.h facilities to let
the user assemble a word by clicking or dragging the mouse through the letter cubes.

• Board exploration. As you will learn, some Boggle boards are a lot more fruitful that others. Write
some code to discover things about the possible boards. Is there an arrangement of the standard
cubes that produces a board containing no words? What about an arrangement that produces a
longest word, maybe even using all the cubes? What is the highest-scoring board you can construct?
Recursion will be handy in trying out all the possible arrangements, but there are a lot of options (do
the math on all the permutations . . .), so you may need to come up with some heuristics to direct
your explorations.

- 5 -

